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Abstract 

Accurate aspect term extraction and semantic consolidation are necessary for Aspect-Based Sentiment Analysis 

(ABSA) to facilitate fine-grained opinion mining. While clustering-based methods can combine related phrases but lack 

contextual understanding, transformer-based models like BERT successfully capture contextual semantics but 

frequently generate duplicate, overlapping, or noisy aspect candidates. In order to overcome these constraints, we 

suggest BERT-Driven Density-Based Clustering for Aspect-Based Sentiment Analysis (BDC-ABSA), a hybrid 

framework that combines hierarchical density-based clustering (HDBSCAN) for robust aspect extraction, refinement, 

and canonical labelling with BERT-based contextual embedding’s. Mean, max, and mean–max pooling is used to 

aggregate token-level representations to create semantically enriched aspect embedding’s. These are then clustered to 

remove noise and combine semantically equivalent terms. BDC-ABSA routinely beats strong baselines, as shown by 

experiments on the Seminal Restaurant and Laptop datasets, Amazon Reviews, and Yelp Review Polarity. The suggested 

framework increases aspect extraction F1 to 88% (from 75–81%), achieves sentiment classification accuracy of 90% 

(from 79–84%), decreases irrelevant aspects to 6% (from 18–22%), and achieves cluster purity of 86% (from 68–74%). 

As an illustration of efficient redundancy reduction and semantic coherence, in a laptop review, raw aspect candidates 

like {battery life, battery duration, keyboard keys} are combined into canonical aspects {battery life, keyboard}. These 

findings show that using density-based clustering in conjunction with deep contextual embedding’s produces accurate, 

interpretable, and noise-resistant aspect representations for improved ABSA performance. 

1. Introduction 

The goal of the sentiment analysis subfield known as Aspect-Based Sentiment Analysis (ABSA) is to extract detailed 

views about particular properties of entities from textual input [1][2][3]. For instance, consumers may comment 

favourably on the battery life but negatively on the camera in product reviews. For applications like social media 

monitoring, recommendation systems, and customer feedback analysis, it is essential to identify such aspect-level 

attitudes [4][5]. Conventional ABSA techniques rely on lexicon-based or rule-based approaches, which frequently fall 

short of capturing multi-word aspect expressions, domain-specific terminology, and complicated language patterns. 

Semantic and contextual information have been successfully extracted from text using deep learning models, including 

CNNs, BiLSTMs, and Transformer-based models like BERT [6][7][8]. These models produce high-dimensional 

embedding’s that encode semantics at the token and sentence levels. However, in real-world datasets when reviews are 

informal, contain misspellings, or contain synonyms for the same feature, purely deep learning algorithms frequently 

provide redundant, overlapping, or noisy aspect candidates. However, clustering-based techniques like DBSCAN or 

HDBSCAN group aspect keywords according to semantic similarity, which helps to eliminate noise and cut down on 
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redundancy [9][10]. However, the usefulness of these methods is limited since they are unable to account for sentence-

level semantics or capture the contextual meaning of multi-word features. This encourages the creation of a hybrid 

strategy that makes use of both paradigms' advantages: Deep learning for contextual embedding’s: to extract multi-

word elements and semantic meaning. Density-based clustering is used to group semantically related aspects and 

eliminate noise in aspect refining [11][12]. The suggested BDC-ABSA methodology creates reliable and semantically 

consistent aspect groups by combining BERT-based contextual embedding’s with HDBSCAN clustering. By 

integrating these techniques, BDC-ABSA overcomes the drawbacks of independent deep learning or clustering 

techniques, improving aspect extraction, reducing noise, and improving sentiment analysis performance in a variety of 

domains. An example of a scenario while standard deep learning could handle "battery life," "battery duration," and 

"battery longevity" as distinct aspects in a laptop review, BDC-ABSA groups them into a single representative aspect, 

improving downstream sentiment interpretation. 

2. Proposal Workflow of BDC-ABSA 

The BDC-ABSA methodology effectively extracts and refines aspects by combining density-based clustering with deep 

learning embedding’s. The hybrid method makes use of HDBSCAN clustering for noise-resistant grouping and 

contextual embedding’s for semantic comprehension. 

• Step 1: Input Text 

The BDC-ABSA system receives raw user-generated evaluations as input, which are naturally noisy and linguistically 

varied. Text preparation allows for uniform representation across samples by normalising the input through tokenisation, 

lowercasing, and the removal of superfluous symbols. By ensuring compatibility with transformer-based encoders and 

lowering lexical variability, this step enhances downstream semantic feature extraction. 

• Example: 

"The battery life of this laptop is amazing, but the camera quality is poor." 

Pre-processing eliminates unnecessary noise and guarantees consistent tokenisation. 

 

• Step 2: Aspect Candidate Extraction (Deep Learning Module). 

The goal of aspect candidate extraction is to find explicit aspect phrases in a sentence that indicate opinion goals. 

Noun/phrase extraction or sequence labelling are used to identify single-word and multi-word aspect expressions. A 

pertained transformer model, such BERT, is used to encode each extracted candidate. This model creates context-aware 

embedding’s that capture the syntactic dependencies and semantic meaning necessary for proper aspect representation. 

Using noun/phrase extraction or sequence labelling, aspect candidate’s a_ (i) are found. Using a transformer model like 

BERT, each candidate is encoded: 

xi = BERT(ai), i = 1,2, … , n 

• Where: 

 xi ∈ ℝdIs the contextual embedding for aspect candidate ai and d= embedding dimension 

For multi-word aspects, sentence-level embedding’s are obtained using mean pooling: 

zi =
1

T
∑xi,t

T

t=1

 

This captures semantic context across all tokens in the aspect. 

• Step 3: Embedding Clustering (HDBSCAN Module) 
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The contextual aspect embedding’s generated by the deep learning module are grouped using Hierarchical Density-

Based Spatial Clustering of Applications with Noise (HDBSCAN). This density-based approach finds clusters of 

semantically similar features while automatically detecting and removing sparse, noisy candidates. Instead of using pre-

set cluster counts, HDBSCAN uses mutual reachability distance to adapt to varying data densities. Consequently, it 

allows for substantial consolidation of redundant aspect expressions and improves semantic coherence among extracted 

aspect groups. To group semantically comparable aspects and eliminate noise candidates, aspect embedding’s {zip} are 

clustered. The definition of the mutual reachability distance between embedding’s is: 

dmreach(i, j) = max⁡(corek(i), corek(j), d(i, j)) 

• Where: 

d(i, j)= Euclidean or Manhattan distance between embedding’s 

corek(i)= distance to the k-the nearest neighbour 

The stability of clusters is evaluated as: 

Stability(C) = ∑(

p∈C

λp,end − λp,start) 

Clusters with higher stability are preserved, while outliers are discarded, ensuring robust aspect grouping. 

• Step 4: Aspect Refinement & Canonical Labelling 

Each aspect group may have several surface forms that relate to the same semantic topic after clustering. The goal of 

aspect refining is to choose a single canonical representative that most accurately captures the cluster's semantic content. 

This is accomplished by determining which aspect's embedding ensures maximal centrality by minimising the average 

Euclidean distance to all other embedding’s inside the cluster. For sentiment analysis that comes next, the resulting 

canonical labels eliminate redundancy and offer a consistent, comprehensible representation. Within each clusterC, the 

most representative aspect is selected by minimizing the Euclidean distance to all other aspects in the cluster: 

a∗ = arg⁡min⁡
a∈C

∑ ∥

j∈C

za − zj ∥2 

This produces canonical aspects that are semantically consistent and reduce redundancy. 

3. Pooling Techniques for Context-Aware Feature Aggregation in Aspect Extraction 

The identification of canonical aspects a∗ from clusters have been chosen, compact aspect-level representations are 

created by combining their token-level contextual embedding’s. Variable-length token sequences can be condensed 

while maintaining crucial semantic information using pooling approaches like mean, max, and mean–max pooling. 

While max pooling draws attention to the most important semantic elements, mean pooling captures the total contextual 

meaning. In addition to producing discriminative embedding’s for sentiment classification and clustering refinement, 

the coupled aggregation improves resilience and lowers intra-aspect variance. 

3.1. Mean Pooling 

Mean pooling aggregates token-level embedding’s by computing their average, producing a single vector that captures 

the overall semantic context of an aspect. This representation smooth’s out individual token variations while retaining 

general meaning. It is effective for generating robust aspect-level embedding’s for clustering or classification. 

The mean of token embedding’s gives the overall semantic representation of the aspect: 

hmean =
∑ Mi
n
i=1  hi

(L)

∑ Mi
n
i=1
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• Where: 

hi
(L) ∈ ℝd= hidden state of token ifrom last BERT layer L 

Mi ∈ {0,1}= attention mask (1 for valid tokens, 0 for padding) 

hmean ∈ ℝd 

Here captures the average semantic context of an aspect. 

 

3.2 Max Pooling. 

Max pooling chooses the maximum activation value in each embedding dimension to aggregate token-level 

embedding’s. This process makes the representation sensitive to key tokens by highlighting the most instructive and 

unique semantic properties inside an aspect. It maintains significant contextual signals that averaging might dilute, in 

contrast to mean pooling. Aspect clustering, canonical aspect selection, and sentiment classification all benefit from 

max-pooled embedding’s increased discriminative power. 

Selects the most salient feature in each embedding dimension: 

hmax[j] = max⁡
i=1,…,n

(hi
(L)[j] ⋅ Mi), j = 1, … , d  

Highlights prominent semantic signals, emphasizing the most important features for downstream sentiment 

classification or clustering. 

The following figure is representation of aspects using max pooling over token embedding’s with BERT's [CLS] token 

embedding. Max pooling preserves important semantic cues by capturing the most prominent characteristics across 

pertinent tokens. Compared to using only the [CLS] token, this results in more discriminative aspect representations. 

 

Figure- BERT's [CLS] token embedding in Max pooling 

3.3 Mean–Max Pooling 

Mean–Max pooling combines the most prominent features with the global semantic context by concatenating the mean 

and max pooled token embedding’s. This fused representation creates richer, more discriminative aspect embedding’s 

by capturing both important signals and overall meaning. The pooling layers improve feature extraction beyond the 

single [CLS] token representation in Figure (a) by aggregating token-level embedding’s processed through a time-

distributed feed-forward layer, as shown in Figure X(b). By utilising extensive semantic data, this method enhances 

sentiment classification, clustering, and canonical aspect selection. 
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Concatenates mean and max pooled vectors for a richer aspect representation: 

hmm = [hmean; hmax] ∈ ℝ2d 

 

         Figure-2: (a) BERT-based classification using the [CLS] token embedding. (b) BERT-based classification          

with mean–max pooling over token embedding’s combined via a time-distributed feed-forward layer.  

3.4. Conv1D Pooling 

Conv1D pooling captures local n-gram patterns by applying convolutional filters over token embedding’s, extracting 

salient sequential features. This complements global pooling methods, enhancing the semantic representation of aspects. 

Captures local n-gram patterns in the token embedding’s: 

ci = f(Wc ⋅ Hi:i+k−1
(L) + bc), i = 1, … , n − k + 1 

hconv = max⁡
i

(ci) 

• Where: 

k= kernel size 

f(⋅)= activation function (ReLU) 

Wc ∈ ℝk×d, bc= trainable parameters 

Hi:i+k−1
(L)

= embeddings of kconsecutive tokens 

Captures local n-gram semantics, complementing global mean and max pooling. 
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Figure 3: 1D convolutional for ABSA 

4. Integration in BDC-ABSA: Hybrid Framework for Robust Aspect Extraction 

The pooled embedding’s integrate token-level contextual knowledge into a single, robust aspect representation. These 

vectors enhance aspect cluster refinement by reducing intra-cluster variance and strengthening semantic cohesion 

among related aspects. They support canonical aspect selection by enabling accurate distance-based identification of 

the most representative aspect within each cluster. Furthermore, the enriched embedding’s act as reliable inputs for 

sentiment classification, improving polarity discrimination. By combining global semantic context and salient features, 

this integration ensures each canonical aspect is context-aware, noise-resilient, and semantically discriminative for 

downstream ABSA tasks. 

• Step 1: Sentiment Assignment 

Each canonical aspect is represented by a context-aware embedding that encodes both syntactic and semantic 

information following aspect refinement. A supervised sentiment classifier, which is usually built using a softmax layer 

over learnt parameters, receives these embedding’s. The classifier gains from less ambiguity and better polarity 

discrimination because sentiment prediction is carried out on refined, noise-free aspect representations. When sentiment 

labels are not needed, the framework can concentrate just on aspect extraction thanks to this optional and modular step. 

Each canonical aspect can be assigned a sentiment label using a classifier (e.g., softmax over BERT embedding’s): 

ya = arg⁡max⁡ Softmax(Wsza + bs) 

• Where: 

ya ∈ {Positive, Negative, Neutral} 

Ws, bs= trainable classifier weights 

 

 Step 2: Output Refined Aspect Groups 

Semantically coherent aspect clusters, each represented by a canonical aspect word, make up BDC-ABSA's final output. 

Redundancy is removed, synonymous terms are combined, and unnecessary possibilities are eliminated by these 

modified groups. Sentiment labels are linked to every canonical aspect when enabled, resulting in organised and 

comprehensible aspect-level sentiment summary. Downstream applications like recommendation systems, opinion 

summarisation, and fine-grained sentiment analytics are made easier by this output format. 
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The final output includes: 

Canonical aspect terms a∗ 

Aspect clusters C 

Sentiment labelsya. 

Table1: Aspect-level sentiment summary 

 

 

 

 

 

 

5. Results and Discussion 

 

5.1 Example: Aspect Grouping 

The qualitative example shows how well BDC-ABSA resolves semantic overlap and aspect redundancy in real-world 

reviews. Density-based clustering over contextual embedding’s is used to group several surface forms that correspond 

to the same notion (such as battery life and battery length) into a single canonical aspect. Semantic boundaries are 

maintained by distinct features like keyboard and camera quality forming distinct clusters. This illustration shows how 

the combination of density-based clustering and contextual embedding’s results in clear, comprehensible aspect 

groupings that enhance the accuracy of ensuing sentiment analysis. 

Review: 

"The battery life of this laptop is amazing, but the camera quality is poor and the keyboard feels cheap." 

Raw Aspect Candidates: 

{"battery life", "camera quality", "keyboard", "battery duration", "keyboard keys"} 

 

Table 2: Clusters after BDC-ABSA 

    S no   Candidate Aspects Canonical Label 

1 battery life, battery duration battery life 

2        camera quality        camera quality 

3 keyboard, keyboard keys keyboard 

 

The model assigns a positive sentiment to battery life, whereas camera quality and keyboard receive negative sentiment 

labels. Redundant and compound aspect expressions are successfully combined, resulting in well-defined and 

semantically coherent clusters. The accompanying figure shows the DBSCAN-based clustering of aspect embeddings 

for Example 5.1 within the BDC-ABSA framework. Throughout this process, sentiment information is retained for 

Cluster Canonical Aspect Sentiment 

1 battery life Positive 

2 camera quality Negative 

3 Keyboard Negative 
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downstream analysis, while conceptually similar aspect terms (such as battery life and battery length) are grouped 

together and represented by a unified canonical aspect. 

 

Figure 4: BDC-ABSA clustering 

5.2 Quantitative Results. 

The quantitative assessment shown in table-3, how effective BDC-ABSA is at enhancing sentiment analysis and aspect 

extraction performance. The semantic coherence of grouped aspect candidates is shown by cluster purity; BDC-ABSA 

achieved 86%, which is much higher than baseline models and shows efficient redundancy elimination. Noise within 

retrieved clusters is quantified by irrelevant characteristics; the framework lowers this to 6%, demonstrating strong 

outlier filtering using HDBSCAN. BDC-ABSA achieved 88%, demonstrating superior recognition of multi-word and 

semantically overlapping aspects. Aspect Extraction F1 examines the balance between precision and recall in 

recognising canonical aspects. Downstream sentiment categorisation is improved by t-aware embedding’s. When taken 

as a whole, these metrics support the hybrid integration of density-based clustering and deep contextual embedding’s 

for reliable and comprehensible ABSA.When taken as a whole, these metrics support the hybrid integration of density-

based clustering and deep contextual embedding’s for reliable and comprehensible ABSA. 

Table 3: Quantitative Assessment 

    Metric BERT 
BiLSTM-

ATT 

CNN-

SVM 

BDC-

ABSA 

Cluster Purity (%)    74     71      68      86 

Irrelevant Aspects 

(%) 
          18             20              22              6 

Aspect Extraction 

F1 (%) 
   81      78              75              88 

Sentiment 

Accuracy (%) 
          84              82              79              90 
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• Figure 5: Quantitative Assessment of Data Models. 

According above graph shown that BDC-ABSA consistently performs better than baseline models in every evaluation 

criterion. Specifically, cluster purity increases by 12–17% and irrelevant features decrease by 14–22%, demonstrating 

the efficacy of combining contextual embedding’s with density-based clustering. 

6. Observations 

Cluster purity improved by 12–17%, reducing redundant aspects. 

Irrelevant aspects were reduced by 14–22%, showing effective noise removal. 

Aspect extraction F1 improved, demonstrating better recognition of canonical aspects. 

Sentiment accuracy increased by 5–9%, indicating that clean aspect clusters enhance polarity classification. 

 

7. Conclusion 

The BDC-ABSA framework leverages the synergy between contextual embedding’s and density-based clustering to 

improve aspect-level sentiment analysis. By consolidating semantically related aspect expressions, it reduces 

redundancy and enhances semantic coherence. The method maintains clear distinctions between different aspects while 

preserving sentiment information for further analysis. Both qualitative and experimental findings indicate more stable 

and meaningful aspect representations across varied review data. In comparison with baseline approaches, the proposed 

framework demonstrates greater reliability and interpretability. Consequently, BDC-ABSA offers an effective and 

scalable approach for fine-grained sentiment analysis. 
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